Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;7(22):1885-95.
doi: 10.1038/sj.gt.3301307.

Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing

Affiliations

Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing

S G Mansfield et al. Gene Ther. 2000 Nov.

Abstract

Most messenger RNA precursors (pre-mRNA) undergo cis-splicing in which introns are excised and the adjoining exons from a single pre-mRNA are ligated together to form mature messenger RNA. This reaction is driven by a complex known as the spliceosome. Spliceosomes can also combine sequences from two independently transcribed pre-mRNAs in a process known as trans-splicing. Spliceosome-mediated RNA trans-splicing (SMaRT) is an emerging technology in which RNA pre-therapeutic molecules (PTMs) are designed to recode a specific pre-mRNA by suppressing cis-splicing while enhancing trans-splicing between the PTM and its pre-mRNA target. This study examined the feasibility of SMaRT as a potential therapy for genetic diseases to correct mutations using cystic fibrosis (CF) as an example. We used several versions of a cystic fibrosis transmembrane conductance regulator (CFTR) mini-gene expressing mutant (deltaF508) pre-mRNA targets and tested this against a number of PTMs capable of binding to the CFTR target intron 9 and trans-splicing in the normal coding sequences for exons 10-24 (containing F508). When 293T cells were cotransfected with both constructs, they produced a trans-spliced mRNA in which normal exon 10-24 replaced mutant exon 10. To test whether SMaRT produced mature CFTR protein, proteins were immunoprecipitated from lysates of cotransfected cells and detected by Western blotting and PKA-phosphorylation. Tryptic phosphopeptide mapping confirmed the identity of CFTR. This proof-of-concept study demonstrates that exon replacement by SMaRT can repair an abnormal pre-mRNA associated with a genetic disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources