Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov 17;6(22):4195-202.
doi: 10.1002/1521-3765(20001117)6:22<4195::aid-chem4195>3.0.co;2-2.

Copper(II) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study

Affiliations

Copper(II) binding modes in the prion octapeptide PHGGGWGQ: a spectroscopic and voltammetric study

R P Bonomo et al. Chemistry. .

Abstract

The N-terminal octapeptide repeat region of human prion protein (PrPc) is known to bind Cu(II). To investigate the binding modes of copper in PrPc, an octapeptide Ac-PHGGGWGQ-NH2 (1), which corresponds to an octa-repeat sequence, and a tetrapeptide Ac-HGGG-NH2 (2) have been synthesised. The copper(II) complexes formed with 1 and 2 have been studied by circular dichroism (CD) and electron spin resonance (ESR) spectroscopy. Both peptides form 1:1 complexes with Cu(II) at neutral and basic pH. CD, ESR and visible absorption spectra suggest a similar co-ordination sphere of the metal ion in both peptides, which at neutral pH consists of a square pyramidal geometry with three peptidic nitrogens and the imidazole nitrogen as donor atoms. Cyclic voltammetric measurements were used to confirm the geometrical features of these copper(II) complexes: the observation of negative redox potentials are in good agreement with the inferred geometry. All these results taken together suggest that peptide 1 provides a single metal binding site to which copper(II) binds strongly at neutral and basic pH and that the binding of the metal induces the formation of a stiffened structure in the HGGG peptide fragment.

PubMed Disclaimer

Publication types

LinkOut - more resources