Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:(58):135-42.
doi: 10.1007/978-3-7091-6284-2_11.

Role of caspase-1 subfamily in cytotoxic cytokine-induced oligodendrocyte cell death

Affiliations
Review

Role of caspase-1 subfamily in cytotoxic cytokine-induced oligodendrocyte cell death

S Hisahara et al. J Neural Transm Suppl. 2000.

Abstract

Oligodendrocytes are myelin forming cells in mammalian central nervous system. About 50% of oligodendrocytes (OLGs) undergo cell death in normal development. In addition, OLG cell deaths have been observed in demyelinating diseases including multiple sclerosis (MS). Clinical observations and in vitro cell culture studies have suggested that cytokines mediate OLG cell damage in multiple sclerosis (MS). Among the cytokines, tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of OLGs in MS. The administration of TNF-alpha to primary cultures of OLGs induced DNA fragmentation, and significantly decreased the number of live OLGs. Chemical inhibitors Ac-YVAD-CHO (a specific inhibitor of caspase-1 (ICE)-like proteases) enhanced the survival of TNF-alpha treated OLGs better than Ac-DEVD-CHO (a specific inhibitor of caspase-3 (CPP32)-like proteases). These results indicate that caspase-1-mediated cell-death pathway are activated in TNF-induced OLG cell death. Caspase-11 is involved in activation of caspase-1. Oligodendrocytes from caspase-11-deficient mice are partially resistant to TNF-induced OLG cell death. Our results suggest that the inhibition of caspase-1 sufamily may be a novel therapeutic approach to treat MS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources