Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;148(1):78-87.
doi: 10.1006/jmre.2000.2205.

Spin-state-selective excitation in selective 1D inverse NMR experiments

Affiliations

Spin-state-selective excitation in selective 1D inverse NMR experiments

T Parella et al. J Magn Reson. 2001 Jan.

Abstract

A general and very simple strategy for achieving clean spin-state-selective excitation with full sensitivity in carbon-selective gradient-enhanced 1D HMQC and HSQC pulse schemes is presented. The incorporation of an additional hard 90 degrees (13)C pulse applied along a specific orthogonal axis just prior to acquisition into the conventional sequences allows us to select a simultaneous coherence transfer pathway which usually is not detected. The superimposition of this resulting antiphase magnetization to the conventional in-phase magnetization gives the exclusive excitation of the directly attached proton showing only the alpha or beta spin state of the passive (13)C nucleus. The propagation of this particular spin state to other protons can be accomplished by adding any homonuclear mixing process just after this supplementary pulse. Such an approach affords a suite of powerful selective 1D (13)C-edited NMR experiments which are helpful for resonance assignment purposes in overcrowded proton spin systems and also for the accurate determination of the magnitude and sign of long-range proton-carbon coupling constants in CH spin sytems for samples at natural abundance. Such measurements are performed by measuring the relative displacement of relayed signals in the corresponding alpha and beta 1D subspectra.

PubMed Disclaimer

LinkOut - more resources