Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan;124(Pt 1):5-19.
doi: 10.1093/brain/124.1.5.

The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurosurgical dogma

Affiliations
Review

The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurosurgical dogma

J Guridi et al. Brain. 2001 Jan.

Abstract

The subthalamic nucleus (STN) currently is considered to play a key role in the pathophysiological origin of the parkinsonian state and is therefore the main target for surgical treatment of Parkinson's disease. The authors review the incidence of hemichorea/ballism (HCB) as a complication of thalamotomy, pallidotomy or campotomy procedures before the introduction of levodopa therapy, including the few reported cases accompanied by a neuropathological study. The literature shows that only a small number of parkinsonian patients with HCB had a lesion of the STN. Preliminary data in Parkinson's disease patients submitted to a subthalamotomy with current functional stereotaxy also indicate that HCB is a very rare complication. To explain this observation, we suggest that the parkinsonian state is characterized by an increased threshold for the induction of dyskinesia following STN lesioning. This arises as a consequence of reduced activity in the 'direct' GABA projection to the globus pallidus medialis (GPm) which accompanies dopamine depletion. Lesioning of the STN reduces excitation of the GPm, and theoretically this should induce dyskinesias. However, an STN lesion also, simultaneously, further reduces the hypoactivity in the globus pallidus lateralis (GPl) that is a feature of Parkinson's disease, and hence may compensate for GPm hypoactivity, thus self-stabilizing basal ganglia output activity and reducing the risk of HCB. We conclude that lesioning of the STN in Parkinson's disease is a feasible approach in some circumstances.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms