Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct-Nov;19(3):312-8.
doi: 10.1002/1098-2388(200010/11)19:3<312::aid-ssu13>3.0.co;2-m.

Challenges to nerve regeneration

Affiliations
Review

Challenges to nerve regeneration

G R Evans. Semin Surg Oncol. 2000 Oct-Nov.

Abstract

Peripheral nerve injuries can result from mechanical, thermal, chemical, congenital, or pathological etiologies. Failure to restore these damaged nerves can lead to the loss of muscle function, impaired sensation, and painful neuropathies. Current surgical strategies for the repair of critical nerves involve the transfer of normal donor nerve from an uninjured body location. However, these "gold standard" methods for tissue restoration frequently are limited by tissue availability, risk of disease spread, secondary deformities, and potential differences in tissue structure and size. One possible alternative to autogenous tissue replacement is the development of engineered constructs to replace those elements necessary for axonal proliferation, including a scaffold, support cells, induction factors, and extracellular matrices. Despite advances and contributions in the field of tissue engineering, results to date with nerve conduits have failed to equal the nerve regeneration achieved with autogenous grafts for large distances. We review the current challenges to tissue-engineered constructs. Each of the four components is reviewed and approaches are outlined. Semin. Surg. Oncol. 19:312-318, 2000.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources