Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;39(1):69-74.
doi: 10.1128/JCM.39.1.69-74.2001.

Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis

Affiliations

Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis

D M Gascoyne-Binzi et al. J Clin Microbiol. 2001 Jan.

Abstract

Compared with solid media, broth-based mycobacterial culture systems have increased sensitivity but also have higher false-positive rates due to cross-contamination. Systematic strain typing is rarely undertaken because the techniques are technically demanding and the data are difficult to organize. Variable number tandem repeat (VNTR) analysis by PCR is rapid and reproducible. The digital profile is easily manipulated in a database. We undertook a retrospective study of Mycobacterium tuberculosis isolates collected over an 18-month period following the introduction of the BACTEC MGIT 960 system. VNTR allele profiles were determined with early positive broth cultures and entered into a database with the specimen processing date and other specimen data. We found 36 distinct VNTR profiles in cultures from 144 patients. Three common VNTR profiles accounted for 45% of true-positive cases. By combining VNTR results with specimen data, we identified nine cross-contamination incidents, six of which were previously unsuspected. These nine incidents resulted in 34 false-positive cultures for 29 patients. False-positive cultures were identified for three patients who had previously been culture positive for tuberculosis and were receiving treatment. Identification of cross-contamination incidents requires careful documentation of specimen data and good communication between clinical and laboratory staff. Automated broth culture systems should be supplemented with molecular analysis to identify cross-contamination events. VNTR analysis is reproducible and provides timely results when applied to early positive broth cultures. This method should ensure that patients are not placed on unnecessary tuberculosis therapy or that cases are not falsely identified as treatment failures. In addition, areas where existing procedures may be improved can be identified.

PubMed Disclaimer

References

    1. Alland D, Kalkut G E, Moss A R, McAdam R A, Hahn J A, Bosworth W, Drucker E, Bloom B R. Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med. 1994;330:1710–1716. - PubMed
    1. Braden C R, Templeton G L, Stead W W, Bates J H, Cave M D, Valway S E. Retrospective detection of laboratory cross-contamination of Mycobacterium tuberculosis cultures with use of DNA fingerprint analysis. Clin Infect Dis. 1997;24:35–40. - PubMed
    1. Burman W J, Stone B L, Reves R R, Wilson M L, Yang Z, El-Hajj H, Bates J H, Cave M D. The incidence of false-positive cultures for Mycobacterium tuberculosis. Am J Respir Crit Care Med. 1997;155:321–326. - PubMed
    1. Conin W, Rodriguez E, Valway S, Bur S, Hooper N, Smithwick R, Butler W R, Dwyer D. Pseudo-outbreak of tuberculosis in an acute-care general hospital: epidemiology and clinical implications. Infect Control Hosp Epidemiol. 1998;19:345–347. - PubMed
    1. Freiden T R, Woodley C L, Crawford J T, Lew D, Dooley S M. The molecular epidemiology of tuberculosis in New York City: the importance of nosocomial transmission and laboratory error. Tuber Lung Dis. 1996;77:407–413. - PubMed

Publication types

MeSH terms