Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jan;32(1):218-24.
doi: 10.1161/01.str.32.1.218.

Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem

Affiliations
Comparative Study

Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem

T Horiuchi et al. Stroke. 2001 Jan.

Abstract

Background and purpose: Potassium channels are important regulators of resting tone in large cerebral arteries, but their activity and distribution may vary according to vessel location and species studied. In the cerebral microcirculation in vivo, however, these channels appear to be silent at rest. Our goal was to determine the activity of potassium channels of brain arterioles from 2 origins under basal conditions in vitro.

Methods: Penetrating cerebral (40. 9+/-2.2 microm control diameter) and brain stem (36.2+/-1.2 microm) arterioles of rats were prepared from middle cerebral and basilar arteries, respectively. The internal diameter of cannulated and pressurized vessel was monitored with the inverted microscope before and after administration of potassium channel inhibitors. In addition, we studied the effect of nitric oxide synthase inhibition on potassium channel activity.

Results: Cerebral and brain stem arterioles were significantly constricted by 4-aminopyridine and low concentration of BaCl(2) but not by glibenclamide. The addition of N:(omega)-nitro-L-arginine to 4-aminopyridine further decreased diameters of both arterioles. Tetraethylammonium ion caused a significant constriction of brain stem but not cerebral arteriole. The brain stem arteriole was further constricted by additional N:(omega)-nitro-L-arginine.

Conclusions: Voltage-dependent and inward-rectifier, but not ATP-sensitive, potassium channels are active under basal conditions of rat cerebral and brain stem arterioles. There is a regional difference in the activity of calcium-activated potassium channels, which, at rest, are open in brain stem but silent in cerebral arterioles. In addition, basal endogenous nitric oxide may not contribute to the activation of voltage-dependent and calcium-activated potassium channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources