Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Dec;23(6):509-32.
doi: 10.2165/00002018-200023060-00003.

Antiarrhythmic agents: drug interactions of clinical significance

Affiliations
Review

Antiarrhythmic agents: drug interactions of clinical significance

T C Trujillo et al. Drug Saf. 2000 Dec.

Abstract

The management of cardiac arrhythmias has grown more complex in recent years. Despite the recent focus on nonpharmacological therapy, most clinical arrhythmias are treated with existing antiarrhythmics. Because of the narrow therapeutic index of antiarrhythmic agents, potential drug interactions with other medications are of major clinical importance. As most antiarrhythmics are metabolised via the cytochrome P450 enzyme system, pharmacokinetic interactions constitute the majority of clinically significant interactions seen with these agents. Antiarrhythmics may be substrates, inducers or inhibitors of cytochrome P450 enzymes, and many of these metabolic interactions have been characterised. However, many potential interactions have not, and knowledge of how antiarrhythmic agents are metabolised by the cytochrome P450 enzyme system may allow clinicians to predict potential interactions. Drug interactions with Vaughn-Williams Class II (beta-blockers) and Class IV (calcium antagonists) agents have previously been reviewed and are not discussed here. Class I agents, which primarily block fast sodium channels and slow conduction velocity, include quinidine, procainamide, disopyramide, lidocaine (lignocaine), mexiletine, flecainide and propafenone. All of these agents except procainamide are metabolised via the cytochrome P450 system and are involved in a number of drug-drug interactions, including over 20 different interactions with quinidine. Quinidine has been observed to inhibit the metabolism of digoxin, tricyclic antidepressants and codeine. Furthermore, cimetidine, azole antifungals and calcium antagonists can significantly inhibit the metabolism of quinidine. Procainamide is excreted via active tubular secretion, which may be inhibited by cimetidine and trimethoprim. Other Class I agents may affect the disposition of warfarin, theophylline and tricyclic antidepressants. Many of these interactions can significantly affect efficacy and/or toxicity. Of the Class III antiarrhythmics, amiodarone is involved in a significant number of interactions since it is a potent inhibitor of several cytochrome P450 enzymes. It can significantly impair the metabolism of digoxin, theophylline and warfarin. Dosages of digoxin and warfarin should empirically be decreased by one-half when amiodarone therapy is added. In addition to pharmacokinetic interactions, many reports describe the use of antiarrhythmic drug combinations for the treatment of arrhythmias. By combining antiarrhythmic drugs and utilising additive electrophysiological/pharmacodynamic effects, antiarrhythmic efficacy may be improved and toxicity reduced. As medication regimens grow more complex with the aging population, knowledge of existing and potential drug-drug interactions becomes vital for clinicians to optimise drug therapy for every patient.

PubMed Disclaimer

References

    1. Drugs. 1982 Sep;24(3):229-39 - PubMed
    1. J Am Coll Cardiol. 1991 May;17(6):1396-402 - PubMed
    1. Am J Cardiol. 1985 Aug 1;56(4):277-84 - PubMed
    1. Eur J Clin Pharmacol. 1999 Aug;55(6):451-6 - PubMed
    1. Am Heart J. 1978 Oct;96(4):518-20 - PubMed

Substances

LinkOut - more resources