Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;76(1):217-23.
doi: 10.1046/j.1471-4159.2001.00062.x.

Possible linkage between glutamate transporter and mitogen-activated protein kinase cascade in cultured rat cortical astrocytes

Affiliations

Possible linkage between glutamate transporter and mitogen-activated protein kinase cascade in cultured rat cortical astrocytes

K Abe et al. J Neurochem. 2001 Jan.

Abstract

The mitogen-activated protein kinases (MAPKs) play a pivotal role in the mediation of cellular responses to a variety of signalling molecules. In the present study, we investigated possible linkage between glutamate signalling and the MAPK cascade in cultured rat cortical astrocytes. Exposure of the cells to L-glutamate (100-1000 microM) resulted in an increase in phosphorylated p44/42 MAPK (ERK1/2) in a concentration- and time-dependent manner. The glutamate-induced ERK1/2 phosphorylation was blocked by U0126 and PD98059, specific inhibitors of the MAPK-activating enzyme MEK. Furthermore, L-glutamate-induced ERK1/2 phosphorylation was not mimicked by glutamate receptor agonists and was not blocked by glutamate receptor antagonists. In contrast, the effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that the MEK/ERK cascade is activated by a mechanism related to glutamate transporters. We propose that the glutamate transporter functions as a receptor transmitting extracellular glutamate signal to intracellular messengers.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources