Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 28;85(1-2):123-32.
doi: 10.1016/s0169-328x(00)00206-0.

Human brain thioltransferase: constitutive expression and localization by fluorescence in situ hybridization

Affiliations

Human brain thioltransferase: constitutive expression and localization by fluorescence in situ hybridization

S Balijepalli et al. Brain Res Mol Brain Res. .

Abstract

Thioltransferase (glutaredoxin) is a member of the family of thiol-disulfide oxido-reductases that maintain the sulfhydryl homeostasis in cells by catalyzing thiol-disulfide interchange reactions. One of the major consequences of oxidative stress in brain is formation of protein-glutathione mixed disulfide (through oxidation of protein thiols) which can be reversed by thioltransferase during recovery of brain from oxidative stress. Here we have visualized the location of thioltransferase in brain regions from seven human tissues obtained at autopsy. Constitutively expressed thioltransferase activity was detectable in all human brains examined although inter-individual variations were seen. The enzyme activity was significantly higher in hippocampus and cerebellum as compared to other regions. Constitutive expression of thioltransferase mRNA was detectable by Northern blot analysis. Localization of thioltransferase mRNA by fluorescence in situ hybridization revealed its presence predominantly in neurons in the cerebral cortex, Purkinje and granule cell layers of the cerebellum, granule cell layer of the dentate gyrus and in the pyramidal neurons of CA1, CA2 and CA3 subfields of hippocampus. These discrete neuronal concentrations of thioltransferase would be consistent with an essential role in modulating recovery of protein thiols from mixed disulfides formed during oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources