Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;45(1):71-9.
doi: 10.1002/1522-2594(200101)45:1<71::aid-mrm1011>3.0.co;2-2.

Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents

Affiliations
Free article

Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents

N Gelman et al. Magn Reson Med. 2001 Jan.
Free article

Abstract

In a study of interregional variation of the longitudinal relaxation rate (R(1)) in human brain at 3 T, R(1) maps were acquired from 12 healthy adults using a multi-slice implementation of the T one by multiple readout pulses (TOMROP) sequence. Mean R(1) values were obtained from the prefrontal cortex (0.567 +/- 0.020 sec(-1)), caudate head (0.675 +/- 0.019 sec(-1)), putamen (0.749 +/- 0.023 sec(-1)), substantia nigra (0.873 +/- 0.037 sec(-1)), globus pallidus (0.960 +/- 0.034 sec(-1)), thalamus (0.822 +/- 0.027 sec(-1)), and frontal white matter (1.184 +/- 0.057 sec(-1)). For gray matter regions other than the thalamus, R(1) showed a strong correlation (r = 0.984, P < 0.0001) with estimated regional nonheme iron concentrations ([Fe]). These R(1) values also showed a strong correlation (r = 0.976, P < 0.0001) with estimates of 1/f(w) obtained from MRI relative proton density measurements, where f(w) represents tissue water content. When white matter is included in the consideration, 1/f(w) is a better predictor of R(1) than is [Fe]. An analysis based on the fast-exchange two-state model of longitudinal relaxation suggests that interregional differences in f(w) account for the majority of the variation of R(1) across gray matter regions. Magn Reson Med 45:71-79, 2001.

PubMed Disclaimer

Publication types

LinkOut - more resources