Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;50(1):77-82.
doi: 10.2337/diabetes.50.1.77.

Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death

Affiliations

Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death

C Bonny et al. Diabetes. 2001 Jan.

Abstract

Stress conditions and proinflammatory cytokines activate the c-Jun NH2-terminal kinase (JNK), a member of the stress-activated group of mitogen-activated protein kinases (MAPKs). We recently demonstrated that inhibition of JNK signaling with the use of the islet-brain (IB) 1 and 2 proteins prevented interleukin (IL)-1beta-induced pancreatic beta-cell death. Bioactive cell-permeable peptide inhibitors of JNK were engineered by linking the minimal 20-amino acid inhibitory domains of the IB proteins to the 10-amino acid HIV-TAT sequence that rapidly translocates inside cells. Kinase assays indicate that the inhibitors block activation of the transcription factor c-Jun by JNK. Addition of the peptides to the insulin-secreting betaTC-3 cell line results in a marked inhibition of IL-1beta-induced c-jun and c-fos expression. The peptides protect betaTC-3 cells against apoptosis induced by IL-1beta. All-D retro-inverso peptides penetrate cells as efficiently as the L-enantiomers, decrease c-Jun activation by JNK, and remain highly stable inside cells. These latter peptides confer full protection against IL-1beta-induced apoptosis for up to 2 weeks of continual treatment with IL-1beta. These data establish these bioactive cell-permeable peptides as potent pharmacological compounds that decrease intracellular JNK signaling and confer long-term protection to pancreatic beta-cells from IL-1beta-induced apoptosis.

PubMed Disclaimer

Publication types

MeSH terms