Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function
- PMID: 11158256
- DOI: 10.1046/j.1471-4159.2001.00075.x
Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function
Abstract
Microglial activation as part of a chronic inflammatory response is a prominent component of Alzheimer's disease. Secreted forms of the beta-amyloid precursor protein (sAPP) previously were found to activate microglia, elevating their neurotoxic potential. To explore neurotoxic mechanisms, we analyzed microglia-conditioned medium for agents that could activate glutamate receptors. Conditioned medium from primary rat microglia activated by sAPP caused a calcium elevation in hippocampal neurons, whereas medium from untreated microglia did not. This response was sensitive to the NMDA receptor antagonist, aminophosphonovaleric acid. Analysis of microglia-conditioned by HPLC revealed dramatically higher concentrations of glutamate in cultures exposed to sAPP. Indeed, the glutamate levels in sAPP-treated cultures were substantially higher than those in cultures treated with amyloid beta-peptide. This sAPP-evoked glutamate release was completely blocked by inhibition of the cystine-glutamate antiporter by alpha-aminoadipate or use of cystine-free medium. Furthermore, a sublethal concentration of sAPP compromised synaptic density in microglia-neuron cocultures, as evidenced by neuronal connectivity assay. Finally, the neurotoxicity evoked by sAPP in microglia-neuron cocultures was attenuated by inhibitors of either the neuronal nitric oxide synthase (N(G)-propyl-L-arginine) or inducible nitric oxide synthase (1400 W). Together, these data indicate a scenario by which microglia activated by sAPP release excitotoxic levels of glutamate, probably as a consequence of autoprotective antioxidant glutathione production within the microglia, ultimately causing synaptic degeneration and neuronal death.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources