Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;280(2):L306-15.
doi: 10.1152/ajplung.2001.280.2.L306.

Effect of glycosaminoglycan degradation on lung tissue viscoelasticity

Affiliations
Free article

Effect of glycosaminoglycan degradation on lung tissue viscoelasticity

R Al Jamal et al. Am J Physiol Lung Cell Mol Physiol. 2001 Feb.
Free article

Abstract

We tested the hypothesis that matrix glycosaminoglycans contribute to lung tissue viscoelasticity. We exposed lung parenchymal strips to specific degradative enzymes (chondroitinase ABC, heparitinase I, and hyaluronidase) and determined whether the mechanical properties of the tissue were affected. Subpleural parenchymal strips were obtained from Sprague-Dawley rats and suspended in a Krebs-filled organ bath. One end of the strip was attached to a force transducer and the other to a servo-controlled lever arm that effected sinusoidal oscillations. Recordings of tension and length at different amplitudes and frequencies of oscillation were recorded before and after enzyme exposure. Resistance, dynamic elastance, and hysteresivity were estimated by fitting the equation of motion to changes in tension and length. Quasi-static stress-strain curves were also obtained. Exposure to chondroitinase and heparitinase I caused significant increases in hysteresivity, no decrement in resistance, and similar decreases in dynamic elastance relative to control strips exposed to Krebs solution only. Conversely, measures of static elastance were different in treated versus control strips. Hyaluronidase treatment did not alter any of the mechanical measures. These data demonstrate that digestion of chondroitin sulfate and heparan sulfate alters the mechanical behavior of lung parenchymal tissues.

PubMed Disclaimer

Publication types

LinkOut - more resources