Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;280(3):L482-92.
doi: 10.1152/ajplung.2001.280.3.L482.

Terminal sialylation is altered in airway cells with impaired CFTR-mediated chloride transport

Affiliations
Free article

Terminal sialylation is altered in airway cells with impaired CFTR-mediated chloride transport

D Kube et al. Am J Physiol Lung Cell Mol Physiol. 2001 Mar.
Free article

Abstract

Reduced terminal sialylation at the surface of airway epithelial cells from patients with cystic fibrosis may predispose them to bacterial infection. To determine whether a lack of chloride transport or misprocessing of mutant cystic fibrosis transmembrane conductance regulator (CFTR) is critical for the alterations in glycosylation, we studied a normal human tracheal epithelial cell line (9/HTEo(-)) transfected with the regulatory (R) domain of CFTR, which blocks CFTR-mediated chloride transport; DeltaF508 CFTR, which is misprocessed, wild-type CFTR; or empty vector. Reduced cAMP-stimulated chloride transport is seen in the R domain and DeltaF508 transfectants. These two cell lines had consistent, significantly reduced binding of elderberry bark lectin, which recognizes terminal sialic acid in the alpha-2,6 configuration. Binding of other lectins, including Maakia amurensis lectin, which recognizes sialic acid in the alpha-2,3 configuration, was comparable in all cell lines. Because the cell surface change occurred in R domain-transfected cells, which continue to express wild-type CFTR, it cannot be related entirely to misprocessed or overexpressed CFTR. It is associated most closely with reduced CFTR activity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources