Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces
- PMID: 11159406
- PMCID: PMC1301237
- DOI: 10.1016/S0006-3495(01)76018-3
Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces
Abstract
Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.
Similar articles
-
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6. Biophys J. 1999. PMID: 9876121 Free PMC article.
-
Analysis and evaluation of channel models: simulations of alamethicin.Biophys J. 2002 Nov;83(5):2393-407. doi: 10.1016/s0006-3495(02)75253-3. Biophys J. 2002. PMID: 12414676 Free PMC article.
-
Simulation studies of alamethicin-bilayer interactions.Biophys J. 1997 Feb;72(2 Pt 1):627-36. doi: 10.1016/s0006-3495(97)78701-0. Biophys J. 1997. PMID: 9017192 Free PMC article.
-
The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.Novartis Found Symp. 1999;225:128-41; discussion 141-5. doi: 10.1002/9780470515716.ch9. Novartis Found Symp. 1999. PMID: 10472052 Review.
-
Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.Biochim Biophys Acta. 1999 Dec 15;1462(1-2):185-200. doi: 10.1016/s0005-2736(99)00206-0. Biochim Biophys Acta. 1999. PMID: 10590308 Review.
Cited by
-
The membrane potential and its representation by a constant electric field in computer simulations.Biophys J. 2008 Nov 1;95(9):4205-16. doi: 10.1529/biophysj.108.136499. Epub 2008 Jul 18. Biophys J. 2008. PMID: 18641071 Free PMC article.
-
Interaction of cardiotoxins with membranes: a molecular modeling study.Biophys J. 2002 Jul;83(1):144-53. doi: 10.1016/S0006-3495(02)75156-4. Biophys J. 2002. PMID: 12080107 Free PMC article.
-
Pore formation induced by an antimicrobial peptide: electrostatic effects.Biophys J. 2008 Dec 15;95(12):5748-56. doi: 10.1529/biophysj.108.136655. Epub 2008 Sep 26. Biophys J. 2008. PMID: 18820233 Free PMC article.
-
KcsA closed and open: modelling and simulation studies.Eur Biophys J. 2004 May;33(3):238-46. doi: 10.1007/s00249-003-0355-2. Epub 2003 Oct 22. Eur Biophys J. 2004. PMID: 14574522
-
Coarse grained model for exploring voltage dependent ion channels.Biochim Biophys Acta. 2012 Feb;1818(2):303-17. doi: 10.1016/j.bbamem.2011.07.043. Epub 2011 Aug 5. Biochim Biophys Acta. 2012. PMID: 21843502 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous