Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Feb;107(3):247-54.
doi: 10.1172/JCI11916.

NF-kappaB in neuronal plasticity and neurodegenerative disorders

Affiliations
Review

NF-kappaB in neuronal plasticity and neurodegenerative disorders

M P Mattson et al. J Clin Invest. 2001 Feb.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Signaling pathways that regulate NF-κB activity in neurons, and their possible involvement in the pathogenesis of neurodegenerative disorders. NF-κB in its inactive form is present in the cytosol as a three-subunit complex, with the prototypical components being p65 and p50 (transcription factor dimer) and IκBα (inhibitory subunit). NF-κB is activated by signals that activate IκB kinase (IKK), resulting in phosphorylation of IκBα; this targets IκBα for degradation in the proteosome and frees the p65-p50 dimer, which then translocates to the nucleus and binds to consensus κB sequences in the enhancer region of κB-responsive genes. Diverse signals can induce NF-κB activation, including TNF-α, sAPPα, NGF, and glutamate; increases in levels of intracellular Ca2+ and reactive oxygen species such as H2O2 can be potent activators of NF-κB. NF-κB induces the expression of several different genes that promote neuron survival, including those encoding manganese superoxide dismutase (Mn-SOD), inhibitor-of-apoptosis proteins (IAPs), Bcl-2, and calbindin. Several signals that inhibit NF-κB activity are generated in neurons undergoing apoptosis; examples include prostate apoptosis response-4 (Par-4) and the lipid peroxidation product 4-hydroxynonenal (HNE). NF-κB is modulated by signals emanating from the endoplasmic reticulum (ER) and mitochondria (MIT). AP1, activator protein-1; GRP78, glucose-regulated protein-78; JUNK, Jun NH2-terminal kinase; PKG, cGMP-dependent protein kinase.
Figure 2
Figure 2
NF-κB in synaptic plasticity. (a) Population spike amplitudes recorded from hippocampal slices from adult mice, pretreated with either scrambled control DNA or κB decoy DNA and stimulated at either 1 or 100 Hz. Note that κB decoy DNA prevents LTD of synaptic transmission induced by stimulation at 1 Hz and attenuated long-term enhancement of synaptic transmission induced by stimulation at 100 Hz. (b) Population spike responses recorded from hippocampal slices from wild-type mice (Control) and mice lacking TNF-α receptors (TNFRKO) after stimulation at either 1 or 100 Hz. Note that LTD of synaptic transmission is not induced by stimulation at 1 Hz in slices from TNFRKO mice, and that long-term enhancement of synaptic transmission is attenuated in slices from TNFRKO mice. Modified from ref..
Figure 3
Figure 3
Complex roles for NF-κB in integrating signaling between and within neurons and glial cells. Following brain injury, NF-κB is activated in neurons and glial cells (astrocytes and microglia). Activation of NF-κB in neurons induces production of antiapoptotic gene products and proteins involved in modulating synaptic plasticity. Activation of NF-κB in glial cells results in production of proinflammatory cytokines, and potentially neurotoxic reactive oxygen species and excitotoxins. APP, amyloid precursor protein; CBPs, calcium-binding proteins; EAA, excitatory amino acid; GlutR, glutamate receptors; IAP, inhibitor-of-apoptosis proteins; NO, nitric oxide; NTF, neurotrophic factor.

References

    1. Baeuerle P, Baltimore D. NF-κB: ten years after. Cell. 1996; 87:13–20. - PubMed
    1. O’Neill LA, Kaltschmidt C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997; 20:252–258. - PubMed
    1. Moerman AM, Mao X, Lucas MM, Barger SW. Characterization of a neuronal κB-binding factor distinct from NF-κB. Brain Res Mol Brain Res. 1999; 67:303–315. - PubMed
    1. Bruce AJ, et al. Altered neuronal and microglial responses to brain injury in mice lacking TNF receptors. Nat Med. 1996; 2:788–794. - PubMed
    1. Carter BD, et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science. 1996; 272:542–545. - PubMed

MeSH terms