Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 15;166(4):2760-7.
doi: 10.4049/jimmunol.166.4.2760.

IL-4 promotes airway eosinophilia by suppressing IFN-gamma production: defining a novel role for IFN-gamma in the regulation of allergic airway inflammation

Affiliations

IL-4 promotes airway eosinophilia by suppressing IFN-gamma production: defining a novel role for IFN-gamma in the regulation of allergic airway inflammation

L Cohn et al. J Immunol. .

Abstract

Airway eosinophilia in asthma is dependent on cytokines secreted by Th2 cells, including IL-5 and IL-4. In these studies we investigated why the absence of IL-4 led to a reduction in airway, but not lung tissue, eosinophils. Using adoptively transferred, in vitro-generated TCR-transgenic Th2 cells deficient in IL-4, we show that this effect is independent of IL-5 and Th2 cell generation. Airway eosinophilia was no longer inhibited when IL-4(-/-) Th2 cells were transferred into IFN-gammaR(-/-) mice, indicating that IFN-gamma was responsible for reducing airway eosinophils in the absence of IL-4. Intranasal administration of IFN-gamma to mice after IL-4(+/+) Th2 cell transfer also caused a reduction in airway, but not lung parenchymal, eosinophils. These studies show that IL-4 indirectly promotes airway eosinophilia by suppressing the production of IFN-gamma. IFN-gamma reduces airway eosinophils by engaging its receptor on hemopoietic cells, possibly the eosinophil itself. These studies capitalize on the complex counterregulatory effects of Th1 and Th2 cytokines in vivo and clarify how IL-4 influences lung eosinophilia. We define a new regulatory role for IFN-gamma, demonstrating that eosinophilic inflammation is differentially regulated at distinct sites within the respiratory tract.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources