Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;167(1):173-82.
doi: 10.1006/exnr.2000.7547.

GDNF rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice

Affiliations

GDNF rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice

S K Akkina et al. Exp Neurol. 2001 Jan.

Abstract

Sensory deficits induced by diabetes commonly affect small unmyelinated peptidergic and nonpeptidergic sensory neurons. The peptidergic population responds to nerve growth factor (NGF), while the nonpeptidergic DRG neurons postnatally switch their dependency from NGF to glial cell line-derived neurotrophic factor (GDNF). Recent studies have demonstrated that deficient NGF support of peptidergic nociceptors is involved in problems with small-fiber diabetic neuropathy. To determine if nonpeptidergic GDNF-responsive neurons are similarly affected by hyperglycemia, diabetes was induced in mice using streptozotocin (STZ). Four weeks following diabetes induction, staining of axon terminals of nonpeptidergic unmyelinated neurons labeled with the isolectin IB4 or enzyme activity for thiamine monophosphatase (TMP) was reduced in lamina IIi of the lumbar dorsal horn, particularly in the medial region which receives distal sciatic afferents. In contrast, NGF-responsive CGRP-immunoreactive (ir) axons showed no or only a slight decrease in spinal terminations. Insulin treatment in diabetic mice failed to improve deficits in IB4/TMP central afferents. To test whether GDNF or NGF could restore spinal deficits in nonpeptidergic afferents, STZ-treated mice were treated intrathecally for 2 weeks with NGF or GDNF. NGF administration enhanced CGRP-ir staining but failed to improve IB4/TMP projections. GDNF treatment had no effect on CGRP-ir projections but restored TMP labeling in lamina IIi. Our results demonstrate that nonpeptidergic unmyelinated sensory neurons are vulnerable to diabetes and that GDNF administration can selectively reverse deficits caused by diabetes in the IB4/TMP subpopulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources