Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Feb 2;305(5):1057-72.
doi: 10.1006/jmbi.2000.4360.

Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes

Affiliations
Comparative Study

Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes

P Auffinger et al. J Mol Biol. .

Abstract

The structural and dynamic properties of the water and ion first coordination shell of the r(A-U) and d(A-T) base-pairs embedded within the r(UpA)12 and d(TpA)12 duplexes are described on the basis of two 2.4 ns molecular dynamics simulations performed in a neutralizing aqueous environment with 0.25 M added KCl. The results are compared to previous molecular dynamics simulations of the r(CpG)12 and d(CpG)12 structures performed under similar conditions. It can be concluded that: (i) RNA helices are more rigid than DNA helices of identical sequence, as reflected by the fact that RNA duplexes keep their initial A-form shape while DNA duplexes adopt more sequence-specific shapes. (ii) Around these base-pairs, the water molecules occupy 21 to 22 well-defined hydration sites, some of which are partially occupied by potassium ions. (iii) These hydration sites are occupied by an average of 21.9, 21.0, 20.1, and 19.8 solvent molecules (water and ions) around the r(G=C), r(A-U), d(G=C), and d(A-T) pairs, respectively. (iv) From a dynamic point of view, the stability of the hydration shell is the strongest for the r(G=C) pairs and the weakest for the d(A-T) pairs. (v) For RNA, the observed long-lived hydration patterns are essentially non-sequence dependent and involve water bridges located in the deep groove and linking OR atoms of adjacent phosphate groups. Maximum lifetimes are close to 400 ps. (vi) In contrast, for DNA, long-lived hydration patterns are sequence dependent and located in the minor groove. For d(CpG)12, water bridges linking the (G)N3 and (C)O2 with the O4' atoms of adjacent nucleotides with 400 ps maximum lifetimes are characterized while no such bridges are observed for d(TpA)12. (vii) Potassium ions are observed to bind preferentially to deep/major groove atoms at RpY steps, essentially d(GpC), r(GpC), and r(ApU), by forming ion-bridges between electronegative atoms of adjacent base-pairs. On average, about half an ion is observed per base-pair. Positive ion-binding determinants are related to the proximity of two or more electronegative atoms. Negative binding determinants are associated with the electrostatic and steric hindrance due to the proximity of electropositive amino groups and neutral methyl groups. Potassium ions form only transient contacts with phosphate groups.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources