The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold
- PMID: 11162123
- DOI: 10.1006/jmbi.2000.4378
The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold
Abstract
To identify the contacts that stabilise the rate-limiting transition state for folding of FNfn10 (the tenth fnIII domain of human fibronectin), 42 mutants have been analysed at 29 positions across this domain. An anomalous response to mutation means that structure formation in the A, B and G strands cannot be evaluated by this method. In all the residues analysed, phi-values are fractional and no completely structured region is observed. The analysis reveals that hydrophobic residues from the central strands of the beta-sandwich form a large core of interactions in the transition state. Brønsted analysis shows that the stabilisation energy from the amino acid side-chains in the transition state is approximately 40 % of that in the native state. The protein folds by a nucleation-condensation mechanism, and tertiary interactions within the core make up the folding nucleus. Local interactions, in turns and loops, are apparently much less significant. Comparison with an homologous domain from human tenascin (TNfn3), shows that FNfn10 has a more extended, structured transition state spanning three different "layers" of the beta-sandwich. The results support the hypothesis that interactions in the common structural core guide the folding of these domains.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources