Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;30(2):91-9.
doi: 10.1006/mpat.2000.0413.

Structure-activity relationship of mycoloyl glycolipids derived from Rhodococcus sp. 4306

Affiliations

Structure-activity relationship of mycoloyl glycolipids derived from Rhodococcus sp. 4306

S Ueda et al. Microb Pathog. 2001 Feb.

Abstract

Novel mycoloyl glycolipids with short carbon chains were isolated and purified from Rhodococcus sp. 4306, a soil origin of Actinomycetales. Their chemical structures were identified as trehalose 6,6'-dimycolate (TDM), trehalose 6-monomycolate, glucose 6-monomycolate, mannose 6-monomycolate and fructose 6-monomycolate. The length of carbon chains and number of double bonds of mycolic acids were C(34), C(36)and C(38)saturated, monoenoic and dienoic molecular species, which were much shorter than those of Mycobacterium tuberculosis (C(78-88)monoenoic and dienoic). Among them, only TDM could induce prominent granulomatous inflammation of the lung and spleen in mice. By contrast, other mycoloyl glycolipids induced mild lesions. The small-sized TDM of Rhodococcus possessed granulomatogenic activity, however, the toxicity was much lower than that of M. tuberculosis. Rhodococcal TDM was composed of mycolic acid with the shortest carbon chains, when compared to granulomatogenic TDM of Mycobacterium, Nocardia and Rhodococcus reported previously. Our results imply that rhodococcal TDM is a pathogenetic factor similar to that of M. tuberculosis, although rhodococcal TDM exhibits low toxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources