The neuronal refractory period causes a short-term peak in the autocorrelation function
- PMID: 11164241
- DOI: 10.1016/s0165-0270(00)00335-6
The neuronal refractory period causes a short-term peak in the autocorrelation function
Abstract
Autocorrelation functions are a major tool for the understanding of single-cell firing patterns. Short-term peaks in autocorrelation functions have previously been interpreted as a tendency towards bursting activity or elevated probability to emit spikes in a short time-scale. These peaks can actually be a result of the firing of a neuron with a refractory period followed by a period of constant firing probability. Analytic studies and simulations of such neurons replicate the autocorrelation functions of real-world neurons. The relative size of the peak increases with the refractory period and with the firing rate of the cell. This phenomenon is therefore more notable in areas such as the globus pallidus and cerebellum and less clear in the cerebral cortex. We describe here a compensation factor that can be calculated from the neuron's hazard function. This factor can be removed from the original autocorrelation function to reveal the underlying firing pattern of the cell.
Similar articles
-
Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations.J Neurosci Methods. 2001 May 30;107(1-2):1-13. doi: 10.1016/s0165-0270(01)00339-9. J Neurosci Methods. 2001. PMID: 11389936
-
The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation.Brain Res. 1991 Mar 8;543(1):123-38. doi: 10.1016/0006-8993(91)91055-6. Brain Res. 1991. PMID: 2054667
-
Neuron firing in driven nonlinear integrate-and-fire models.Math Biosci. 2007 Jun;207(2):302-11. doi: 10.1016/j.mbs.2006.08.014. Epub 2006 Aug 25. Math Biosci. 2007. PMID: 17011592
-
Refractoriness and neural precision.J Neurosci. 1998 Mar 15;18(6):2200-11. doi: 10.1523/JNEUROSCI.18-06-02200.1998. J Neurosci. 1998. PMID: 9482804 Free PMC article. Review.
-
Neuronal activity in the globus pallidus in primary dystonia and off-period dystonia.J Neurol. 2000 Sep;247 Suppl 5:V49-52. doi: 10.1007/pl00007782. J Neurol. 2000. PMID: 11081803 Review.
Cited by
-
Complex autonomous firing patterns of striatal low-threshold spike interneurons.J Neurophysiol. 2012 Aug 1;108(3):771-81. doi: 10.1152/jn.00283.2012. Epub 2012 May 9. J Neurophysiol. 2012. PMID: 22572945 Free PMC article.
-
Role of spike timing in the forelimb somatosensory cortex of the rat.J Neurosci. 2004 Aug 18;24(33):7266-71. doi: 10.1523/JNEUROSCI.2523-04.2004. J Neurosci. 2004. PMID: 15317852 Free PMC article.
-
Alpha-synuclein oligomers alter the spontaneous firing discharge of cultured midbrain neurons.Front Cell Neurosci. 2023 Jan 20;17:1078550. doi: 10.3389/fncel.2023.1078550. eCollection 2023. Front Cell Neurosci. 2023. PMID: 36744002 Free PMC article.
-
Intraspinal transplantation and modulation of donor neuron electrophysiological activity.Exp Neurol. 2014 Jan;251:47-57. doi: 10.1016/j.expneurol.2013.10.016. Epub 2013 Nov 2. Exp Neurol. 2014. PMID: 24192152 Free PMC article.
-
Detecting rhythmic spiking through the power spectra of point process model residuals.J Neural Eng. 2024 Aug 5;21(4):046041. doi: 10.1088/1741-2552/ad6188. J Neural Eng. 2024. PMID: 38986461 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources