Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;29(4):198-204.

Bilirubin UDP-glucuronosyltransferase 1A1 gene polymorphisms: susceptibility to oxidative damage and cancer?

Affiliations
  • PMID: 11170257

Bilirubin UDP-glucuronosyltransferase 1A1 gene polymorphisms: susceptibility to oxidative damage and cancer?

D J Grant et al. Mol Carcinog. 2000 Dec.

Abstract

The UDP-glucuronosyltransferase 1A1 (UGT1A1) gene product catalyzes the glucuronidation of serum bilirubin as part of normal heme catabolism. Recently, TA repeat polymorphisms containing five, six, seven, and eight TA dinucleotides in a putative TATA box in the promoter region of the UGT1A1 gene have been described. TA repeat number modulates UGT1A1 transcriptional activity and the quantity of enzyme available to conjugate serum bilirubin. Serum bilirubin is a known antioxidant, and low serum bilirubin has been associated with increased risk for coronary artery disease and inhibition of reactive oxygen species (ROS)-induced damage to erythrocytes in vitro. We hypothesize that the UGT1A1 TA repeats or other functional polymorphisms resulting in lower serum bilirubin levels may be predictive of genetic susceptibility to oxidative damage and cancer. Exposure-related or endogenous production of ROS may impact the integrity of cellular macromolecules and infrastructure, lead to DNA base changes or chromosomal aberrations, and induce toxicity or apoptosis. ROS damage to lipoproteins may be a factor in formation of atherogenic plaques in coronary heart disease. Thus, cellular oxidative stress could contribute to tumorigenesis through mutagenic or epigenetic pathways, and higher serum bilirubin levels should inhibit this process. No definitive studies have been performed, but in a small prospective study of colon cancer, serum bilirubin levels were observed to be lower in these cases. Another study has suggested a link between UGT1A1 alleles, estrogen metabolism, and risk in breast cancer. Epidemiologic studies examining variation in ROS metabolism, ROS damage, bilirubin, and cancer risk will demonstrate the value of this hypothesis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources