Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 1;71(3):339-50.
doi: 10.1006/geno.2000.6440.

A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family

Affiliations

A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family

D L Burgess et al. Genomics. .

Abstract

The CACNG1 gene on chromosome 17q24 encodes an integral membrane protein that was originally isolated as the regulatory gamma subunit of voltage-dependent Ca2+ channels from skeletal muscle. The existence of an extended family of gamma subunits was subsequently demonstrated upon identification of CACNG2 (22q13), CACNG3 (16p12-p13), and CACNG4 and CACNG5 (17q24). In this study, we describe a cluster of three novel gamma subunit genes, CACNG6, CACNG7, and CACNG8, located in a tandem array on 19q13.4. Phylogenetic analysis indicates that this array is paralogous to the cluster containing CACNG1, CACNG5, and CACNG4, respectively, on chromosome 17q24. We developed sensitive RT-PCR assays and examined the expression profile of each member of the gamma subunit gene family, CACNG1-CACNG8. Analysis of 24 human tissues plus 3 dissected brain regions revealed that CACNG1 through CACNG8 are all coexpressed in fetal and adult brain and differentially transcribed among a wide variety of other tissues. The expression of distinct complements of gamma subunit isoforms in different cell types may be an important mechanism for regulating Ca2+ channel function.

PubMed Disclaimer

Publication types

MeSH terms

Associated data