Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;204(Pt 4):691-9.
doi: 10.1242/jeb.204.4.691.

In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes

Affiliations

In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes

D Y Boudko et al. J Exp Biol. 2001 Feb.

Abstract

The alkaline environment, pH approximately 11, in the anterior midgut lumen of mosquito larvae is essential for normal nutrition and development. The mechanism of alkalization is, however, unknown. Although evidence from immunohistochemistry, electron microscopy and electrophysiology suggests that a V-ATPase is present in the basal membranes of the epithelial cells, its physiological role in the alkalization process has not been demonstrated. To investigate a possible role of the V-ATPase in lumen alkalization, pH gradients emanating from the hemolymph side of the midgut in semi-intact mosquito larvae were measured using non-invasive, self-referencing, ion-selective microelectrodes (SERIS). Large H+ concentration gradients, with highest concentrations close to the basal membrane (outward [H+] gradients), were found in the anterior midgut, whereas much smaller gradients, with concentrations lowest close to this membrane (inward [H+] gradients), were found in the gastric caeca and posterior midgut. Similar region-specific pH gradients, with consistent anterior-to-posterior profiles, were observed in individuals of two Aedes species, Aedes aegypti from semi-tropical Florida and Aedes canadensis from north-temperate Massachusetts. The gradients remained in a steady state for up to 6 h, the maximum duration of the recordings. Bafilomycin A1 (10(-5), 10(-7 )mol x l(-1)) on the hemolymph side greatly diminished the [H+] gradients in the anterior midgut but had no effect on the gradients in the gastric caecum and posterior midgut. These physiological data are consistent with the previous findings noted above. Together, they support the hypothesis that a basal, electrogenic H+ V-ATPase energizes luminal alkalization in the anterior midgut of larval mosquitoes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources