Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Feb;8(2):211-35.
doi: 10.2174/0929867013373787.

Histone deacetylase: a target for antiproliferative and antiprotozoal agents

Affiliations
Review

Histone deacetylase: a target for antiproliferative and antiprotozoal agents

P T Meinke et al. Curr Med Chem. 2001 Feb.

Abstract

Histone deacetylase (HDAC) and histone acetyltransferase (HAT) are enzymes that influence transcription by selectively deacetylating or acetylating the eta-amino groups of lysines located near the amino termini of core histone proteins. It is well-established that in transcriptionally active chromatin, histones generally are hyperacetylated and, conversely, hypoacetylated histones are coincident with silenced chromatin. Revived interest in these enzymatic pathways and how they modulate eukaryotic transcription has led to the identification of multiple cofactors whose complex interplay with HDAC affects gene expression. Concurrent with these discoveries, screening of natural product sources yielded new small molecules that were subsequently identified as potent inhibitors of HDAC. While predominantly identified using antiproliferative assays, the biological activity of these new HDAC inhibitors also encompasses significant antiprotozoal, antifungal, phytotoxic and antiviral applications. These newly discovered HDAC inhibitors served as lead structures for the development of improved derivatives including related reagents with considerable potential as tools to further elucidate the mechanism of transcriptional regulation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources