Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;7(2):107-112.
doi: 10.1016/s1369-703x(00)00108-x.

Mass transfer resistance of sterile plugs in shaking bioreactors

Affiliations

Mass transfer resistance of sterile plugs in shaking bioreactors

C Mrotzek et al. Biochem Eng J. 2001 Mar.

Abstract

One of the mass transfer resistances for the gas exchange of shaking flasks is the sterile plug. The gas exchange through the sterile plug is described by an extended model of Henzler and Schedel [Bioprocess Eng. 7 (1991) 123]. Based on this model, a new method was developed to obtain the mass transfer resistance of various sterile closures. It consists of measuring the water evaporation rate of the shaking flask and is therefore very easily applied. Sterile plugs made of cotton, wrapped paper, urethane foam and fibreglass and caps made out of aluminium and silicone have been examined. Instead of the oxygen transfer coefficient (k(O(2))), which is commonly found in the literature, the carbon dioxide diffusion coefficient (D(CO(2))) is used to describe the mass transfer resistance of the sterile plug. The investigation revealed that this resistance is mainly dependent on the neck geometry and to a lesser extent on the plug material and density. The gas exchange of aluminium-caps was not reproducible.

PubMed Disclaimer

LinkOut - more resources