Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study
- PMID: 11174377
- DOI: 10.1067/mjd.2001.110395
Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study
Abstract
Background: Differentiation of melanoma from melanocytic nevi is difficult even for skin cancer specialists. This motivates interest in computer-assisted analysis of lesion images.
Objective: Our purpose was to offer fully automatic differentiation of melanoma from dysplastic and other melanocytic nevi through multispectral digital dermoscopy.
Method: At 4 clinical centers, images were taken of pigmented lesions suspected of being melanoma before biopsy. Ten gray-level (MelaFind) images of each lesion were acquired, each in a different portion of the visible and near-infrared spectrum. The images of 63 melanomas (33 invasive, 30 in situ) and 183 melanocytic nevi (of which 111 were dysplastic) were processed automatically through a computer expert system to separate melanomas from nevi. The expert system used either a linear or a nonlinear classifier. The "gold standard" for training and testing these classifiers was concordant diagnosis by two dermatopathologists.
Results: On resubstitution, 100% sensitivity was achieved at 85% specificity with a 13-parameter linear classifier and 100%/73% with a 12-parameter nonlinear classifier. Under leave-one-out cross-validation, the linear classifier gave 100%/84% (sensitivity/specificity), whereas the nonlinear classifier gave 95%/68%. Infrared image features were significant, as were features based on wavelet analysis.
Conclusion: Automatic differentiation of invasive and in situ melanomas from melanocytic nevi is feasible, through multispectral digital dermoscopy.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
