Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation
- PMID: 11175787
- DOI: 10.1038/84826
Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation
Abstract
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that have been implicated in the regulation of gene expression, cell-cycle control and oncogenesis. MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types. To ascertain the requirement for chromatin remodeling enzymes in cellular differentiation processes, we examined MyoD-mediated induction of muscle differentiation in fibroblasts expressing dominant-negative versions of the human brahma-related gene-1 (BRG1) or human brahma (BRM), the ATPase subunits of two distinct SWI/SNF enzymes. We find that induction of the myogenic phenotype is completely abrogated in the presence of the mutant enzymes. We further demonstrate that failure to induce muscle-specific gene expression correlates with inhibition of chromatin remodeling in the promoter region of an endogenous muscle-specific gene. Our results demonstrate that SWI/SNF enzymes promote MyoD-mediated muscle differentiation and indicate that these enzymes function by altering chromatin structure in promoter regions of endogenous, differentiation-specific loci.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
