Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 16;88(3):305-12.
doi: 10.1161/01.res.88.3.305.

Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis

Affiliations
Free article

Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis

P Andreka et al. Circ Res. .
Free article

Abstract

Nitric oxide (NO) induces apoptosis in cardiac myocytes through an oxidant-sensitive mechanism. However, additional factors appear to modulate the exact timing and rate of NO-dependent apoptosis. In this study, we investigated the role of mitogen-activated protein kinases (MAPKs) (extracellular signal-regulated kinase [ERK] 1/2, c-Jun N-terminal kinase [JNK] 1/2, and p38MAPK) in NO-mediated apoptotic signaling. The NO donor S:-nitrosoglutathione (GSNO) induced caspase-dependent apoptosis in neonatal rat cardiac myocytes, preceded by a rapid (<10-minute) and significant (approximately 50-fold) activation of JNK1/2. Activation of JNK was cGMP dependent and was inversely related to NO concentration; it was maximal at the lowest dose of GSNO (10 micromol/L) and negligible at 1 mmol/L. NO slightly increased ERK1/2 beginning at 2 hours but did not affect p38MAPK activity. Inhibitors of ERK and p38MAPK activation did not affect cell death rates. In contrast, expression of dominant-negative JNK1 or MKK4 mutants significantly increased NO-induced apoptosis at 5 hours (56.77% and 57.37%, respectively, versus control, 40.5%), whereas MEKK1, an upstream activator of JNK, sharply reduced apoptosis in a JNK-dependent manner. Adenovirus-mediated expression of dominant-negative JNK1 both eliminated the rapid activation of JNK by NO and accelerated NO-mediated apoptosis by approximately 2 hours. These data indicate that NO activates JNK as part of a cytoprotective response, concurrent with initiation of apoptotic signaling. Early, transient activation of JNK serves both to delay and to reduce the total extent of apoptosis in cardiac myocytes.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources