Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;45(2):196-201.
doi: 10.1002/1522-2594(200102)45:2<196::aid-mrm1026>3.0.co;2-1.

Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation

Affiliations
Free article

Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation

J Baudewig et al. Magn Reson Med. 2001 Feb.
Free article

Abstract

Blood oxygenation level dependent (BOLD) MRI was used to monitor modulations of human sensorimotor activity by prior transcranial direct current stimulation (tDCS). Activation maps for a right hand sequential finger opposition task were obtained for six subjects before as well as 0-5 min and 15-20 min after a 5-min period of 1 mA cathodal and, in a separate session, anodal tDCS of the left-hemispheric motor cortex. Cathodal tDCS resulted in a global decrease of the mean number of activated pixels by 38% (P < 0.01) 0-5 min after stimulation, which reduced to 28% (P < 0.05) 15-20 min after stimulation. A region-of-interest analysis revealed a 57% decrease of activated pixels (P < 0.001) in the supplementary motor area, but no change in the hand area of the primary motor cortex. Anodal tDCS yielded a nonsignificant 5% increase of activated pixels with no regional differences. These findings support the view that reduced neuroaxonal excitability after cathodal tDCS causes reduced brain activity. However, rather than affecting the primary sensorimotor input of an active task, the process appears to dampen those responses that rely on cortico-cortical connections and related processing. Magn Reson Med 45:196-201, 2001.

PubMed Disclaimer

LinkOut - more resources