A single beta subunit M2 domain residue controls the picrotoxin sensitivity of alphabeta heteromeric glycine receptor chloride channels
- PMID: 11181831
- DOI: 10.1046/j.1471-4159.2001.00124.x
A single beta subunit M2 domain residue controls the picrotoxin sensitivity of alphabeta heteromeric glycine receptor chloride channels
Abstract
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alphabeta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alphabeta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alphabeta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin (as an allosterically acting 'competitive' antagonist) binds to this residue.
Similar articles
-
Asymmetric contribution of alpha and beta subunits to the activation of alphabeta heteromeric glycine receptors.J Neurochem. 2003 Jul;86(2):498-507. doi: 10.1046/j.1471-4159.2003.01872.x. J Neurochem. 2003. PMID: 12871591
-
A picrotoxin-specific conformational change in the glycine receptor M2-M3 loop.J Biol Chem. 2005 Oct 28;280(43):35836-43. doi: 10.1074/jbc.M506645200. Epub 2005 Aug 18. J Biol Chem. 2005. PMID: 16109711
-
Gating effects on picrotin block of glycine receptors.Neuroreport. 2012 Dec 5;23(17):1017-20. doi: 10.1097/WNR.0b013e32835a8629. Neuroreport. 2012. PMID: 23079787
-
Characterization of a glycine receptor domain that controls the binding and gating mechanisms of the beta-amino acid agonist, taurine.J Neurochem. 2001 Nov;79(3):636-47. doi: 10.1046/j.1471-4159.2001.00601.x. J Neurochem. 2001. PMID: 11701767
-
Glycine receptors: Structure, function, and therapeutic implications.Mol Aspects Med. 2025 Jun;103:101360. doi: 10.1016/j.mam.2025.101360. Epub 2025 Apr 7. Mol Aspects Med. 2025. PMID: 40198976 Review.
Cited by
-
Loss of Extrasynaptic Inhibitory Glycine Receptors in the Hippocampus of an AD Mouse Model Is Restored by Treatment with Artesunate.Int J Mol Sci. 2023 Feb 27;24(5):4623. doi: 10.3390/ijms24054623. Int J Mol Sci. 2023. PMID: 36902054 Free PMC article.
-
Structure and Mechanism of Glycine Receptor Elucidated by Cryo-Electron Microscopy.Front Pharmacol. 2022 Aug 9;13:925116. doi: 10.3389/fphar.2022.925116. eCollection 2022. Front Pharmacol. 2022. PMID: 36016557 Free PMC article. Review.
-
Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.Br J Pharmacol. 2012 Apr;165(8):2707-20. doi: 10.1111/j.1476-5381.2011.01722.x. Br J Pharmacol. 2012. PMID: 22035056 Free PMC article.
-
Binding sites for bilobalide, diltiazem, ginkgolide, and picrotoxinin at the 5-HT3 receptor.Mol Pharmacol. 2011 Jul;80(1):183-90. doi: 10.1124/mol.111.071415. Epub 2011 Apr 19. Mol Pharmacol. 2011. PMID: 21505038 Free PMC article.
-
Conformational transitions and allosteric modulation in a heteromeric glycine receptor.Nat Commun. 2023 Mar 13;14(1):1363. doi: 10.1038/s41467-023-37106-7. Nat Commun. 2023. PMID: 36914669 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources