Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Mar;296(3):723-35.

In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results

Affiliations
  • PMID: 11181899
Comparative Study

In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results

M Yamazaki et al. J Pharmacol Exp Ther. 2001 Mar.

Abstract

Two different cellular assay models were assessed as in vitro systems for P-glycoprotein (P-gp) substrate identification: cellular accumulation studies with KB-V1, a human MDR1 P-gp-overexpressing multidrug-resistant human epidermoid carcinoma cell line; and transcellular transport studies with L-MDR1 (or L-mdr1a), a human MDR1 (or mouse mdr1a)-transfected porcine renal epithelial cell line. The in vitro-in vivo correlation for P-gp-mediated transport activity was also examined by comparing in vitro data obtained from L-mdr1a cell studies and in vivo data from mdr1a (-/-)/(+/+) CF-1 mice studies for several compounds. The results are summarized as follows: 1) two in vitro assay systems routinely identified the substrate for human MDR1 P-gp-mediated transport with similar quantitative results; 2) in vitro studies with L-MDR1 and L-mdr1a cells demonstrated that the P-gp substrate susceptibility is different between human and mouse for certain compounds (species difference); and 3) in vivo brain concentration ratios of mdr1a (-/-) to (+/+) CF-1 mice, either at a certain time point or up to 60 min, correlated well with the in vitro transcellular transport ratios from L-mdr1a cells (r(2) = 0.968 and 0.926, respectively). This indicates that, at least in mice, the in vitro data are valid predictors of the in vivo contribution of P-gp: the contribution of P-gp to the distribution of the compound to the brain up to 60 min post i.v. administration. These results provide a rationale for predicting in vivo relevance of P-gp in human from in vitro data using human P-gp-expressing cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources