Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Oct 6;302(5):1153-64.
doi: 10.1006/jmbi.2000.4119.

Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA

Affiliations
Free article
Comparative Study

Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA

W Ding et al. J Mol Biol. .
Free article

Abstract

Outer surface protein A (OspA) is a major lipoprotein of the Borrelia burgdorferi spirochete, the causative agent of Lyme disease. Vaccination with OspA generates an immune response that can prevent bacterial transmission to a mammalian host during the attachment of an infected tick. However, the protective capacity of immune sera cannot be predicted by measuring total anti-OspA antibody. The murine monoclonal antibody LA-2 defines an important protective B-cell epitope of OspA against which protective sera have strong levels of reactivity. We have now mapped the LA-2 epitope of OspA using both NMR chemical-shift perturbation measurements in solution and X-ray crystal structure determination. LA-2 recognizes the three surface-exposed loops of the C-terminal domain of OspA that are on the tip of the elongated molecule most distant from the lipid-modified N terminus. The structure suggests that the natural variation at OspA sequence position 208 in the first loop is a major limiting factor for antibody cross-reactivity between different Lyme disease-causing Borrelia strains. The unusual Fab-dominated lattice of the crystal also permits a rare view of antigen flexibility within an antigen:antibody complex. These results provide a rationale for improvements in OspA-based vaccines and suggest possible designs for more direct tests of antibody protective levels in vaccinated individuals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources