Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000:926:101-15.
doi: 10.1111/j.1749-6632.2000.tb05603.x.

First and second messenger role of calcium. Survival versus apoptosis in serum-free cultured granulosa explants

Affiliations

First and second messenger role of calcium. Survival versus apoptosis in serum-free cultured granulosa explants

S Mussche et al. Ann N Y Acad Sci. 2000.

Abstract

In order to elucidate the causal relationship between increased intracellular free calcium ([Ca2+]i) and induction of apoptosis, serum-free cultured granulosa cell (GC) explants were subjected to various experimental protocols interfering with normal Ca2+ homeostasis. Modulation of apoptotic indices was calculated on DAPI-stained GC explants. In some experiments [Ca2+]i was measured with the Ca2+ probe fura-2 in combination with epifluorescence microscopy. Buffering of [Ca2+]i with BAPTA-AM resulted in inhibition of apoptosis, while increasing extracellular Ca2+ (otherwise called [Ca2+]e load) resulted in a biphasic response characterized by an initial inhibitory effect on apoptosis followed by a delayed phase of increased apoptosis that became apparent at 4 h after withdrawal of the [Ca2+]e load. The initial inhibitory effect of the [Ca2+]e load on apoptosis was dependent on the concentration of the load (range 2-50 mM), was augmented when the [Ca2+]e load was applied in the presence of the Ca2+ channel blocker methoxyverapamil, and was mimicked by applying Mg2+ and Gd3+, two Ca(2+)-receptor agonists. These observations point towards the involvement of an extracellular Ca(2+)-sensing receptor (CaR). Measurements of [Ca2+]i showed that the ion was increased just after [Ca2+]e load, followed by recovery that was complete at 2 h after the load. Collectively these data suggest that a [Ca2+]e load initiates apoptosis, becoming manifest 4 h later, by the provoked [Ca2+]i increase, and this effect is preceded by an apoptosis-inhibiting phase presumably involving CaR activation. We conclude that Ca2+ may act as a first (extracellular) messenger promoting cell survival and as a second (intracellular) messenger activating the cell death pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources