Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:923:154-65.
doi: 10.1111/j.1749-6632.2000.tb05527.x.

Regulation of the Clara cell secretory protein/uteroglobin promoter in lung

Affiliations
Review

Regulation of the Clara cell secretory protein/uteroglobin promoter in lung

M Nord et al. Ann N Y Acad Sci. 2000.

Abstract

Clara cell secretory protein/uteroglobin (CCSP/UG) is specifically expressed in the conducting airway epithelium of the lung in a differentiation-dependent manner. The proximal promoter region of the rodent CCSP/UG gene directs Clara cell specificity. Previously, it was shown that the forkhead transcription factors HNF-3 alpha and beta and the homeodomain factor TTF-1 are important transcription factors acting through this region, suggesting that they contribute to cell specificity of the CCSP/UG gene. Members of the C/EBP family of transcription factors can also interact with elements of the proximal rat and mouse CCSP/UG promoters. The onset of C/EBP alpha expression in Clara cells correlates with the strong increase of CCSP/UG expression. Thus, C/EBP alpha may play a crucial role for differentiation-dependent CCSP/UG expression. Transfection studies demonstrate that C/EBP alpha and TTF-1 can synergistically activate the murine CCSP/UG promoter. Altogether, these results suggest that C/EBP alpha, TTF-1, and HNF-3 determine the Clara cell-specific, differentiation-dependent expression of the CCSP/UG gene in murine lung. The relative importance of these three transcription factors, however, differs in rabbits and humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources