Nitrogen limitation of microbial decomposition in a grassland under elevated CO2
- PMID: 11196641
- DOI: 10.1038/35051576
Nitrogen limitation of microbial decomposition in a grassland under elevated CO2
Abstract
Carbon accumulation in the terrestrial biosphere could partially offset the effects of anthropogenic CO2 emissions on atmospheric CO2. The net impact of increased CO2 on the carbon balance of terrestrial ecosystems is unclear, however, because elevated CO2 effects on carbon input to soils and plant use of water and nutrients often have contrasting effects on microbial processes. Here we show suppression of microbial decomposition in an annual grassland after continuous exposure to increased CO2 for five growing seasons. The increased CO2 enhanced plant nitrogen uptake, microbial biomass carbon, and available carbon for microbes. But it reduced available soil nitrogen, exacerbated nitrogen constraints on microbes, and reduced microbial respiration per unit biomass. These results indicate that increased CO2 can alter the interaction between plants and microbes in favour of plant utilization of nitrogen, thereby slowing microbial decomposition and increasing ecosystem carbon accumulation.
Similar articles
-
Nitrogen limitation constrains sustainability of ecosystem response to CO2.Nature. 2006 Apr 13;440(7086):922-5. doi: 10.1038/nature04486. Nature. 2006. PMID: 16612381
-
Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition.Nature. 2001 Apr 12;410(6830):809-12. doi: 10.1038/35071062. Nature. 2001. PMID: 11298447
-
Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition.Science. 2009 Dec 4;326(5958):1399-402. doi: 10.1126/science.1178820. Science. 2009. PMID: 19965757
-
Effects of elevated atmospheric CO2 concentrations on soil microorganisms.J Microbiol. 2004 Dec;42(4):267-77. J Microbiol. 2004. PMID: 15650682 Review.
-
Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.Photochem Photobiol Sci. 2007 Mar;6(3):252-66. doi: 10.1039/b700019g. Epub 2007 Feb 1. Photochem Photobiol Sci. 2007. PMID: 17344961 Review.
Cited by
-
Planting Cyperus esculentus augments soil microbial biomass and diversity, but not enzymatic activities.PeerJ. 2022 Oct 13;10:e14199. doi: 10.7717/peerj.14199. eCollection 2022. PeerJ. 2022. PMID: 36258793 Free PMC article.
-
Atmospheric nitrogen deposition promotes carbon loss from peat bogs.Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19386-9. doi: 10.1073/pnas.0606629104. Epub 2006 Dec 6. Proc Natl Acad Sci U S A. 2006. PMID: 17151199 Free PMC article.
-
The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide.ISME J. 2012 Feb;6(2):259-72. doi: 10.1038/ismej.2011.99. Epub 2011 Jul 28. ISME J. 2012. PMID: 21796217 Free PMC article.
-
Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria.Nat Commun. 2023 Jan 24;14(1):391. doi: 10.1038/s41467-023-36086-y. Nat Commun. 2023. PMID: 36693873 Free PMC article.
-
Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO2 concentration.Folia Microbiol (Praha). 2004;49(5):563-8. doi: 10.1007/BF02931534. Folia Microbiol (Praha). 2004. PMID: 15702546
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources