Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;52(12):1473-81.
doi: 10.1211/0022357001777685.

Different effects of amitriptyline and imipramine on the pharmacokinetics and metabolism of perazine in rats

Affiliations
Comparative Study

Different effects of amitriptyline and imipramine on the pharmacokinetics and metabolism of perazine in rats

W A Daniel et al. J Pharm Pharmacol. 2000 Dec.

Abstract

The aim of this study was to search for possible effects of imipramine and amitriptyline on the pharmacokinetics and metabolism of perazine at steady state in rats. Perazine (10 mg kg(-1), i.p.) was administered to rats twice daily for two weeks, alone or jointly with imipramine or amitriptyline (10 mg kg(-1) i.p.). Concentrations of perazine and its two main metabolites (5-sulphoxide and N-desmethylperazine) in the plasma and brain were measured at 30 min (Cmax), 6h and 12h (slow disposition phase) after the last dose of the drugs. Liver microsomes were prepared 24 h after withdrawal of the drugs. Amitriptyline increased the plasma and brain concentrations of perazine (up to 300% of the control) and N-desmethylperazine, while not affecting those of 5-sulphoxide. Imipramine only tended to increase the neuroleptic concentration in the plasma and brain. Studies with control liver microsomes showed that amitriptyline and imipramine added to the incubation mixture in-vitro, competitively inhibited N-demethylation (Ki (inhibition constant) = 16 microM and 164 microM, respectively) and 5-sulphoxidation (Ki = 57 microM and 86 microM, respectively) of perazine, amitriptyline being a more potent inhibitor of perazine metabolism, especially with respect to N-demethylation. Studies with microsomes of rats treated chronically with perazine or tricyclic antidepressants, or both, did not show significant differences in the rate of perazine metabolism between perazine- and perazine+antidepressant-treated rats. The data obtained were compared with the results of analogous experiments with promazine and thioridazine. It was concluded that elevations of perazine concentration were caused by direct inhibition of the neuroleptic metabolism by the antidepressants. Similar interactions, possibly leading to exacerbation of the pharmacological action of perazine, may be expected in man. Since the interactions between phenothiazines and tricyclic antidepressants may proceed in two directions, reduced doses of both the neuroleptic and the antidepressant are recommended when the drugs are administered jointly.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources