Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;200(1):17-26.

Measurement of respiratory impedance by impulse oscillometry--effects of endotracheal tubes

Affiliations
  • PMID: 11197918

Measurement of respiratory impedance by impulse oscillometry--effects of endotracheal tubes

G E Kuhnle et al. Res Exp Med (Berl). 2000 Dec.

Abstract

Impulse Oscillometry is a new, noninvasive method to measure respiratory impedance, i.e. airway resistance and reactance at different oscillation frequencies. These parameters are potentially useful for the monitoring of respiratory mechanics in the critically ill patent with respiratory dysfunction. The endotracheal tube, used to mechanically ventilate these patients, however, represents an additional nonlinear impedance that introduces artifacts into the measurements. The objective of this work was therefore to investigate the effects of clinically available endotracheal tubes on resistance and reactance of an in vitro analogue of the respiratory system. Additionally, the effects of decreasing the compressible gas volume in this experimental model, as a simulation of decreased lung capacity and compliance, was investigated. Impulse oscillometric measurements of the test analogue gave highly reproducible results with and without an endotracheal tube. The tubes had significant influence on the measurement of the test object at all frequencies investigated. Changes of low frequent reactance were negligible - at least if repetitive measurements of the same system are performed - for realistic measurement of airway resistance, a correction of the tube impedance or measurement of the pressure distal of the tube is required. Resistance increased and low frequent reactance decreased significantly with decreasing gas volume. These changes were of magnitudes higher than the variations due to the introduction of the endotracheal tubes. Our results suggest that changes of respiratory reactance measured with impulse oscillometry may be used as a monitoring parameter in intubated patients.

PubMed Disclaimer

Similar articles

Cited by