Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;47(10):617-26.
doi: 10.1046/j.1439-0442.2000.00325.x.

Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses

Affiliations

Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses

E Scharrer et al. J Vet Med A Physiol Pathol Clin Med. 2000 Dec.

Abstract

To detect whether pentoses and hexoses occurring in rumen bacteria or in hemicellulose ingested with feed and partly released in the small intestine have an affinity for the Na(+)-dependent glucose transporter of the bovine intestinal brush border membrane (BBM), we investigated whether these monosaccharides inhibit Na(+)-dependent transport of 14C-labelled D-xylose across the BBM using brush border membrane vesicles (BBMV) isolated from the mid-jejunum of cows. We used D-xylose as the transport substrate, because it has a low affinity for the Na(+)-dependent glucose transporter and thus its uptake into BBMV is more efficiently competitively inhibited by other sugars than that of D-glucose. D-Ribose, D-mannose and L-rhamnose occurring in rumen bacteria significantly inhibited Na(+)-dependent uptake of D-xylose into BBMV, but their inhibitory effect was less than that of D-glucose, D-xylose and phlorizin. This also applied to L-arabinose (and D-arabinose), which is, like D-xylose and D-galactose, a constituent of hemicellulose, and to 2-deoxy-D-glucose. Of all monosaccharides tested, only D-fructose did not affect Na(+)-dependent D-xylose transport. It is concluded that some pentoses and hexoses occurring in rumen bacteria (D-ribose, D-mannose and L-rhamnose) or hemicellulose (L-arabinose and D-xylose) have a low affinity for the Na(+)-dependent glucose transporter of the bovine BBM and may therefore be absorbed from the jejunum when released in the small intestine.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources