Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec;84(4):431-7.
doi: 10.1254/jjp.84.431.

Role of Ca2+ mobilization in muscarinic receptor-mediated membrane depolarization in guinea pig ileal smooth muscle cells

Affiliations
Free article

Role of Ca2+ mobilization in muscarinic receptor-mediated membrane depolarization in guinea pig ileal smooth muscle cells

T Unno et al. Jpn J Pharmacol. 2000 Dec.
Free article

Abstract

In single smooth muscle cells dispersed from guinea pig ileum, the muscarinic agonist carbachol (CCh) at 2 microM produced an oscillatory or sustained type of depolarization and at 100 microM, the latter type depolarization. Depletion of internal Ca2+ stores blocked the oscillatory response, but not the sustained responses to 2 microM and 100 microM CCh, although their decay after reaching the peak became faster. Blocking voltage-dependent Ca2+ channels (VDCCs) blocked both types of response to 2 microM CCh, but only slowed the initial rising phase of 100 microM CCh responses. Combination of Ca2+ store depletion and VDCC blockade abolished the responses to 2 microM CCh again and decreased those to 100 microM CCh in peak amplitude and persistency. Combination of Ca2+ store depletion with removal of extracellular Ca2+ markedly reduced or abolished the 100 microM CCh responses. The results suggest that muscarinic depolarization of the ileal cells requires Ca2+ mobilization for its generation and persistence; at weak muscarinic stimulation, both Ca2+ entry via VDCCs and Ca2+ release from internal stores may contribute to the Ca2+ mobilization; and under strong muscarinic stimulation, Ca2+ entry pathways resistant to VDCC blockers may also contribute to it.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms