Metal surface treatment: characterization and effect on composite-to-metal bond strength
- PMID: 11203852
Metal surface treatment: characterization and effect on composite-to-metal bond strength
Abstract
This study evaluated the effect of four methods of metal surface preparation and the use of silane on the bond strength between resin and a Noble metal alloy. SEM Examination and x-ray energy-dispersive spectroscopy (EDS) of the various metal surface treatments was also performed. One-hundred metal disks were cast in a Noble metal alloy (Porcelain #76). Ninety disks were polished flat and the surfaces received one of four abrasive treatments (n = 20). 1) Roughening with a diamond bur at high speed; 2) Air abrasion with an intraoral sandblaster using alumina particles; 3) Air abrasion with KCP-2000 and 4) Air abrasion with an intraoral sandblaster using silanated silica covered alumina particles (CoJet-Sand). Half the specimens from each treatment group (n = 10) were silanated prior to bonding procedures (All-Bond 2 adhesive system, Pertac-Hybrid composite). Specimens were stored in distilled water at 37 degrees C and thermocycled prior to shear strength testing. The 10 remaining metal disks were used for scanning electron microscopy and x-ray energy-dispersive spectroscopy (EDS). Scanning electron microscopy examined the micromorphology of the metal surfaces produced by the four abrasive treatments and x-ray energy-dispersive spectroscopy (EDS) to evaluate changes in surface composition. Two untreated disks served as controls. One-way ANOVA and Tukey's HSD post-hoc test demonstrated that air abrasion with CoJet-Sand and silane resulted in significantly higher resin-to-metal bond strength than all other metal surface treatments, while roughening with a diamond bur produced the lowest bond strength. Resin-to-metal bond strength was similar for all other particle abrasive treatments with or without silane. Using silane significantly improved bond strength only for metal surfaces treated with CoJet-Sand. An increase in Al concentration was observed on metal surfaces sandblasted with aluminum oxide, and an increase in the concentration of both Al and Si was observed on surfaces air-abraded with CoJet-Sand.
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous