Oxygen diffusive barriers of rat distal colon: role of subepithelial tissue, mucosa, and mucus gel layer
- PMID: 11215723
- DOI: 10.1023/a:1026411118033
Oxygen diffusive barriers of rat distal colon: role of subepithelial tissue, mucosa, and mucus gel layer
Abstract
The contributions of subepithelial tissue, mucosa, and mucus gel layer as restraints for oxygen diffusion in rat distal colon in vitro were assessed by comparing oxygen transfer through preparations of isolated submucosa, isolated mucosa with and without the superficial mucus gel layer, and mucosa-submucosa mounted as flat sheets in a diffusion chamber. One side of the chamber was gassed with 95% O2-5% CO2 while the time course of oxygen concentration rise was measured in the continuously stirred opposite side, initially equilibrated with near-zero oxygen solution. The procedure does not affect epithelial viability. Diffusion in isolated mucosa was the same before and after KCN (5 mM) treatment, suggesting that epithelial oxygen consumption does not influence transfer rates. Subepithelial tissue, mucosa, and mucus gel layer are roughly responsible, respectively, for 12%, 56%, and 32% of oxygen diffusive hindrance. Diffusion coefficients range from 13% (mucosa-submucosa) to 54% (isolated submucosa) of that of water. Subepithelial tissue accounts for about 12% of total diffusive restraint.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources