Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar;42(3):653-9.

Effect of cyclosporine on conjunctival mucin in a canine keratoconjunctivitis sicca model

Affiliations
  • PMID: 11222523

Effect of cyclosporine on conjunctival mucin in a canine keratoconjunctivitis sicca model

C P Moore et al. Invest Ophthalmol Vis Sci. 2001 Mar.

Abstract

Purpose: To test the hypothesis that beneficial effects of Cyclosporin A (CsA; Sandimmune; Sandoz, Basel, Switzerland) in treating keratoconjunctivitis sicca (KCS) include an effect on the mucin-producing conjunctival goblet cells independent of CsA's effect on lacrimation.

Methods: Keratoconjunctivitis sicca was induced bilaterally in six dogs after removal of orbital and nictitans lacrimal glands. Two weeks after induction of KCS, either 2% CsA or vehicle was applied twice daily to each surgically altered eye until 6 weeks after KCS induction. Eyes of three control dogs without surgically altered eyes were treated twice daily with vehicle only. Incisional biopsy specimens of ventral fornix conjunctiva were collected before gland removal (baseline) and at 2, 4, and 6 weeks after KCS induction. At each sampling time, eyes were photographed, and color images were subsequently graded for degree of conjunctivitis and characteristics of ocular discharge. Intracellular mucin stores in conjunctival epithelia were estimated using computer-assisted morphometry of biopsy specimen cross sections, and clinical and morphometric findings were correlated.

Results: Lacrimal gland removal resulted in induction of KCS in dogs by 2 weeks, with mean Schirmer tear test (STT) values of 5 mm/min or less occurring in surgically altered eyes compared with STT values of 22.5 mm/min before surgery and 22.9 mm/min in unaltered control eyes at 2 weeks. In surgically altered eyes, STTs remained low during the 6-week study, independent of topical treatment. Intracellular mucin stores were quantified from conjunctival samples collected from each eye at baseline and 2, 4, and 6 weeks. At 4 and 6 weeks (after 2 and 4 weeks of topical treatment), intraepithelial mucin quantities were significantly greater (P: < 0.05) in CsA-treated KCS eyes (14.4 and 13.1 microm(2)/microm, respectively) compared with pretreatment KCS (7.4 microm(2)/microm) eyes and vehicle-treated KCS eyes (7.3 and 8.5 microm(2)/microm, respectively). KCS eyes treated with CsA had lower conjunctivitis and ocular discharge scores than did vehicle-treated KCS eyes.

Conclusions: Topical 2% CsA restored in vivo conjunctival mucin stores to control levels over a 4-week period, determined by computer-assisted morphometry of sequential conjunctival biopsy specimens from eyes of dogs with surgically induced KCS. Degree of conjunctivitis and severity of mucus discharge were decreased in KCS eyes treated with CsA. Because lacrimal tissues were removed from animals in this study, conjunctival responses occurred independent of lacrimogenic effect(s). These results indicate that restoration of conjunctival goblet cell mucin production, i.e., the balance between synthesis and secretion of mucin glycoproteins, may play an important role in the beneficial effect of CsA in treating KCS.

PubMed Disclaimer

Publication types

MeSH terms