Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality
- PMID: 11222603
- PMCID: PMC95100
- DOI: 10.1128/JB.183.6.2041-2045.2001
Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality
Abstract
The discovery of toxin-antitoxin gene pairs (also called addiction modules) on extrachromosomal elements of Escherichia coli, and particularly the discovery of homologous modules on the bacterial chromosome, suggest that a potential for programmed cell death may be inherent in bacterial cultures. We have reported on the E. coli mazEF system, a regulatable addiction module located on the bacterial chromosome. MazF is a stable toxin and MazE is a labile antitoxin. Here we show that cell death mediated by the E. coli mazEF module can be triggered by several antibiotics (rifampicin, chloramphenicol, and spectinomycin) that are general inhibitors of transcription and/or translation. These antibiotics inhibit the continuous expression of the labile antitoxin MazE, and as a result, the stable toxin MazF causes cell death. Our results have implications for the possible mode(s) of action of this group of antibiotics.
Figures
References
-
- Cashel M, Gentry D R, Hernandez V Z, Vinella D. The stringent response. In: Neidhardt F C, Curtis III R, Ingraham J L, Lin E C C, Low K B M, Magasanik B, Reznikoff W S, Riley M, Schaechter M, Umbarger H E, editors. Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. Washington, D.C.: American Society for Microbiology; 1996. pp. 1458–1496.
-
- Chatterji D, Fujita N, Ishihama A. The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells. 1998;3:279–287. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
