Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 19;87(1):71-80.
doi: 10.1016/s0169-328x(00)00285-0.

Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats

Affiliations

Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats

I Ay et al. Brain Res Mol Brain Res. .

Abstract

In previous studies, we showed that basic fibroblast growth factor (bFGF) reduced infarct volume when infused intravenously in animal models of focal cerebral ischemia. In the current study, we examined the potential mechanism of infarct reduction by bFGF, especially effects on apoptosis within the ischemic brain. We found that bFGF decreased DNA fragmentation in the ischemic hemisphere, as assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) histochemical methods combined with morphological criteria. bFGF also prevented reduction of immunoreactivity of the anti-apoptotic protein Bcl-2 in the ischemic hemisphere, but did not alter immunoreactivity of the pro-apoptotic proteins Bax, Caspase-1, or Caspase-3. These changes in TUNEL histochemistry and Bcl-2 immunoreactivity were especially prominent in cortex at the borders ('penumbra') of infarcts, spared by bFGF treatment. We conclude that the infarct-reducing effects of bFGF may be due, in part, to prevention of downregulation of Bcl-2 expression and decreased apoptosis in the ischemic brain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources