Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Spring;1(1):55-69.
doi: 10.1089/ars.1999.1.1-55.

Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation

Affiliations

Novel mechanisms involved in superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum linked to cyclic ADP-ribose stimulation

S Kumasaka et al. Antioxid Redox Signal. 1999 Spring.

Abstract

It has been suggested that cyclic adenosine 5'-diphosphoribose (cADPR) directly activates the cardiac isoform of the ryanodine receptor (RyR)/Ca2+ release channel. We have previously shown that selective activation of RyR/Ca2+ release channel by superoxide anion radical (O2.-) is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2.- -triggered Ca2+ release through the RyR/Ca2+ release channel of cardiac sarcoplasmic reticulum (SR). We now demonstrate that although the effect of O2.- on Ca2+ efflux from RyR/Ca2+ release channel at higher concentrations ( >5 microM) is due to its ability to produce a loss in function of calmodulin thereby decreasing calmodulin inhibition, O2.- radicals at lower concentrations (<5 microM) may be able to stimulate Ca2+ release only in the presence of calmodulin from the SR via increased cADPR synthesis; it is also shown that cADPR is a modulator that can activate the Ca2+-release mechanism when it is in a sensitized state by the presence of calmodulin, possibly, at physiological concentration. In addition, the SR vesicles immediately upon addition of cADPR, but not NAD+, did exhibit Ca2+ efflux stimulation. When heart homogenate was incubated with O2.-, conversion of NAD+ into cADPR was stimulated; the reduction of homogenate Ca2+ uptake (by increasing Ca2+ efflux through RyR/Ca2+ release channel) occurred. Thus O2.- radical is responsible for cADPR formation from NAD+ in the cellular environment outside of the SR of heart muscle. The results presented here provide the first evidence of a messenger role for O2.- radical in cADPR-mediated Ca2+ mobilization in myocardium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources