Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan 29;265(1-3):269-80.
doi: 10.1016/s0048-9697(00)00663-x.

Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland

Affiliations

Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland

R Malcolm et al. Sci Total Environ. .

Abstract

Groundwater in a shallow coastal aquifer in north east Scotland was monitored over the hydrological year October 1996-September 1997. Groundwater flow from inland areas sustained freshwater conditions in a dune-wetland complex of conservation importance. In particular, seasonal flooding of the coastal wetlands due to water table rise provided important roosting and breeding habitats for waterfowl. Hydrogeochemical analysis revealed that groundwater in the shallow sand aquifer was circum-neutral, and non-saline, despite being within 50 m of the sea and only 1 m above the mean high water mark. Calcium and HCO3 were the dominant cation and anion respectively, reflecting weathering processes in the aquifer. Use of the geochemical code NETPATH indicated that calcite weathering in shell fragments within the sand was the primary source of Ca and alkalinity generation. The concentrations of Na and Cl were also important, though these can be explained primarily by atmospheric inputs from precipitation. In detail, the spatial and temporal variation in groundwater chemistry was remarkably complex for what intuitively appeared a simple aquifer system. Temporal variations in groundwater chemistry mainly related to the seasonal event of groundwater recharge. Thus, the main period of rising groundwater levels resulted in a marked dilution of solutes in the aquifer, implying that water storage greatly increased in a relatively short period. A period of several weeks appeared to be required for dissolution processes to proceed to equilibrium. Spatial variation in groundwater chemistry appears to relate to the spatial distribution of geochemical processes in different hydrogeological units. Sulphate reduction, alkalinity generation and Fe precipitation appear to be locally important processes. The chemistry of groundwater maintains the wetland habitat by providing freshwater conditions that allow populations of various plant species to flourish. The potentially large recharge catchments of coastal wetlands, together with increasing pressures in the coastal zone, dictate that pollution can threaten the integrity of hydrochemical processes and requires careful monitoring if freshwater wetlands are to maintain their conservation importance.

PubMed Disclaimer

Publication types

LinkOut - more resources